6,071,317

25

which the SVC was executed. This record describes the
remediation behavior to be executed.

The RPDF consists of a header record, followed by one
patch data record for each instruction patch in the NCDF.
The header record contains:

The library and load module name

The number of sub-records

Space reserved for SVC usage.

Each patch data record contains:

The patch type

Control Section (C-SEC) offset of the patched instruction
(the address of the SVC)

Parameter data which the SVC, uses to execute the patch

When SVC starts running, it loads a library of patch
modules. There is one of these modules for each type of
patch that can be applied. When SVC needs to execute a
patch, it calls the patch module specified by the RPDF
record, passing a parameter block which contains informa-
tion determined at analysis time. The library module then
executes the patched code, and returns to SVC, and then to
the remediated program.

After the necessary modifications are analyzed, the modi-
fications necessary to the load module to provide the modi-
fied functionality as described above are thus defined 120.
The defined modified load module 124 is then saved 122.
The modified load module 124 may include an external
reference table for trapping date exceptions or otherwise
controlling program execution, as well as modified and/or
additional object modules. For example, additional load
modules may provide input and output data reformatting
and/or transformation using a sliding window technique,
which might possibly alleviate the need for modifications to
the original object modules within the load module 108.

The stored modified load module 124 is subsequently
executed by evaluation of the JCL referencing command 126
in the normal sequence of program execution. It is noted that
the modified load module 124 may be generated in advance
of use or the entire procedure applied immediately prior to
program execution. After execution of the modified load
module 126, normal program execution continues, indicated
by the stop 128, which may include execution of other load
modules, modified load modules, or the modification and
execution according to the present invention of other load
modules.

There has thus been shown and described novel object
code remediation systems, which fulfill all the objects and
advantages sought therefor. Many changes, modifications,
variations, combinations, subcombinations and other uses
and applications of the subject invention will, however,
become apparent to those skilled in the art after considering
this specification and the accompanying drawings which
disclose the preferred embodiments thereof. All such
changes, modifications, variations and other uses and appli-
cations which do not depart from the spirit and scope of the
invention are deemed to be covered by the invention, which
is to be limited only by the claims which follow.

What is claimed is:

1. A method for automatically modifying computer pro-
gram logic with respect to a selected data type, comprising
the steps of:

(2) analyzing object code representing computer program
logic from the computer program to identify references
to the selected data type, substantially without refer-
ence to or reconstruction of source code, wherein the
object code representing computer program logic is
analyzed by one or more processes selected from the
group consisting of:

10

15

20

25

30

35

40

45

50

55

60

65

26

disassembly, further comprising the step of applying
inferential analysis and state dependent analysis to the
disassembled object code representing computer pro-
gram logic,

scanning data files referenced by the object code repre-

senting computer program logic to locate data format-
ted as date data, and

tracing presumed references to the selected data type

through a logical flow of the computer program logic;

(b) modifying the computer program logic with respect to

the selected data type to alter computer program logical
execution with respect thereto; and

(c) storing information representing the modified com-

puter program logic for execution.

2. The method according to claim 1, wherein the object
code representing computer program logic is modified by
substituting elements, substantially without changing a
length or arrangement of the object code.

3. The method according to claim 1, wherein the object
code representing computer program logic is modified by
replacement of an instruction with a subroutine call instruc-
tion.

4. The method according to claim 3, further comprising
the steps of replacing an instruction of the object code with
a no-operation code.

5. The method according to claim 1, wherein the object
code is modified by replacing an instruction of the object
code with a jump instruction.

6. The method according to claim 1, wherein the object
code is modified by replacing an instruction of the object
code with a trap instruction.

7. The method according to claim 1, wherein the object
code is modified by replacing an instruction of the object
code with a new machine instruction.

8. The method according to claim 7, wherein the new
instruction is a data-dependent instruction, having at least
two functions selectively executed depending on a value of
stored data.

9. The method according to claim 1, wherein modified
program logic is represented in a separate object code
module from the object code representing computer program
logic.

10. The method according to claim 1, wherein the object
code representing computer program logic is modified by a
patch.

11. The method according to claim 1, wherein the object
code representing computer program logic is analyzed by a
process comprising disassembly, further comprising the step
of applying inferential analysis and state dependent analysis
to the disassembled object code representing computer pro-
gram logic.

12. The method according to claim 1, wherein the selected
data type comprises date-related information.

13. The method according to claim 1, wherein the com-
puter program logic executes on an IBM mainframe com-
patible computer.

14. The method according to claim 1, wherein the com-
puter program logic executes under an operating system
selected from the group consisting of IBM MVS, VM,
0S400 and 0S2.

15. The method according to claim 1, wherein said
analysis is automated.

16. The method according to claim 1, wherein the object
code representing computer program logic is included in a
load module, each load module also including a load map
defining a computing environment of the object code.

17. The method according to claim 16, wherein a
sequence of load module execution is defined by a series of
Job Control Language statements.



